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Reversibility in nonequilibrium trajectories of an optically trapped particle

J. C. Reid, D. M. Carberry, G. M. Wang, E. M. Sevick, and Denis J. Evans
Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia

Debra J. Searles
School of Science, Griffith University, Brisbane QLD 4111, Australia
(Received 5 December 2003; revised manuscript received 24 February 2004; published 8 July 2004

The fluctuation theorertFT) describes how a system’s thermodynamic irreversibility develops in time from
a completely thermodynamically reversible system at short observation times, to a thermodynamically irre-
versible one at infinitely long times. In this paper, we present a general definition of the dissipation fapction
the quantitative argument in the fluctuation theor@f), that is a measure of a system’s irreversibility.
Originally cast for deterministic systems, we demonstrate, through the example of two recent experiments, that
the dissipation function can be defined for stochastic systems. While the ensemble avethde jpdsitive
definite irrespective of the system for which it is constructed, different expressiofl @n arise in stochas-
tic and deterministic systems. Moreover, within the stochastic framewnris, not unique. Nevertheless, each
of these expressions fd}, satisfies the FT.
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I. INTRODUCTION demonstrated from deterministj2,3], and stochastic equa-
As Loschmidt pointed out in 1876, the equations of mo-tions of motion[4-10, and recently measured in experiment
tion are time reversible, so that for every trajectory that satl11l- In €ach of these cases, the dissipation function was
isfies Newton’s equations, there is a time-reversed trajector§!€fved from deterministic Newtonian equations of motion
or “antitrajectory,” that is also a solution to the equations of0! “detailed balance.” However, in some of these studies
motion[1]. If a System evolves from stateto stateB along [9-11], the time and lengths scales of interest are too large to

; ; o ; : e easily simulated using molecular dynamics simulations.
a given path, then the system’s antitrajectory is described b . . )
the time-reversed path from an initial st&do a final state ebowitz and Spohiil2], on the other hand, derive a dissi

A But while a particular traiectorv and its coniugate antitra-pation function using local detailed balance together with
; P J y IUg stochastic dynamics. In this paper, we provide a definition

jectory are both SOIL.‘t'Ons of t_he equations of motion, .thefor a fully stochastically derived dissipation function which
probability of observing an antitrajectory can be exception--5, pe applied to systems whose time and length scales are
ally small compared with that of its respective trajectory. ongistent with Langevin dynamics. Two recent experiments
That is, the evolution of a system proceeds preferentially ifyemonstrated that trajectories of an isolated colloidal particle
one direction. The second law of thermodynamics stipulatefy an optical trap obey the FT11,13. An optical trap is
that a macroscopic system evolves overwhelmingly in onejormed when a transparent, micron-sized particle, whose in-
time-forward direction, and is “irreversible.” However, the dex of refraction is greater than that of the surrounding me-
second law is strictly applicable only to large systems ovedium, is located within a focused laser beam. The refracted
long time scales and does not describe small nanosystemays differ in intensity over the volume of the sphere and
which may not be completely irreversible over small timeexert a subpico-Newton foroggN=1012N) on the particle,
and length scales. Auantitativedescription of irreversibility — drawing it towards the region of highest light intensity, i.e.,
for systems of arbitrary size is given by the fluctuation theo-the focal point or trap center. The optical trap is harmonic: a
rem(FT) of Evans and colleagué¢2,3]. The theorem bridges particle located from the center of the trap has an optical
the gap between the mathematical description of reversibléorce, F,,=—kr, acting to restore its position to the trap cen-
dynamics and the second law expectation of irreversible proter. k is the trapping constant which can be tuned by adjust-
cesses. In fact the FT predicts that small systems are reverisig the laser power. The first experiment by Waatal. [11],
ible over short time scales, and this has been verified invhich we refer to as the “drag” experiment, recorded particle
computer simulation and experiment. trajectories in a translating trap and showed that the dissipa-
The principle argument of the FT is the dissipation func-tion function follows an integrated form of the FT. The sec-
tion, which is a measure of a system’s irreversibility and isond and more recent experiment by Carbeetyal. [13],
defined as the ratio of probability densities of observing anamed the “capture” experiment, recorded particle trajecto-
trajectory of duratiort to that of its antitrajectory. The FT ries in a trap whose strength was increased discontinuously
describes the asymmetry in the distribution of a dissipationin time. This showed that the dissipation function directly
function with observation time. In other words, the FT de-satisfies the FT14].
scribes the transition from a fully reversible system, at van- In this paper, we investigate the measure of irreversibility,
ishingly short observation times, to an irreversible one, ateferred to as the dissipation function, that serves as the
infinitely long observation times. However, the FT does notquantitative argument in the FT. In the next section, we re-
prescribe the time or length scales over which reversibilityiew the derivation of the dissipation function using both
can be observed. These time and length scales have bebiewtonian and Langevin dynamics and show how, by con-
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struction, the dissipation function obeys the FT. In Sec. llI,

we analyze the dissipation function for the capture experi-
ment and in Sec. IV, we analyze the dissipation functions that
apply to the drag experiment. For these experiments, we de
rive dissipation functions directly from Langevin dynamics

and show that the dissipation function can have different
forms which nevertheless satisfy the FT.

Il. IRREVERSIBILITY MEASURE
A. Newtonian derivation of the dissipation function

Under Newtonian dynamics, a system'’s state is describe(
in terms of the coordinate and momentg of all constitu-
ent molecules, including solvent molecules, and is repre-
sented by a point in phase spafe={q,p}. Trajectories in
phase space are deterministic; that is, each point in phas|
space corresponds to a unique trajectory and a trajectory ca
be identified by its point in phase space at any arbitrary time
s, I's. Consider a trajectory initiated &t,={qq,po}, att=0,
that terminates after timeat I';={q;,p:}. Let sV(I'y), rep-
resent an infinitesimal volume of states about the pbint

FIG. 1. (Color onling An illustration of a set of neighboring
NVp(T) = lim 696p. (1) Newtonian trajectories initiated in a volume elemeént-(I'g) (top
3q,0p—0 tube) and the corresponding set of time reverse or antitrajectories
initiated in b\/F(Fg) (lower tube in coordinate, momentuntl’
For every initial state within volume elemem/F(I‘o) there =q,p) and timet space. For every trajectory that starts &
exists a unique destination point within volume element=(qq,py) in volume elemeniVp(I'y) and ends al’;=(q;,p,) in
SVr(I'y). Thus 8Vr(I'y), wheres can take on any value be- volume elemen®V(T,) at some timet later, there exists its time
tween 0 and, represents a unique “bundle” of trajectories, reversed or antitrajectory that starts EEE(gn-Dt) in element
identified by their state points at ting Since the same ex- &Vr(I'g) and ends afl’, =(qo,-po) in 6Vp(I'). The size of the
clusive set of trajectories are described by b&(I'y) and ~ volume elementsVi(I'y) and 6V (I'y) are equivalent by time re-
SVr(I'y), the probabilities of observing the bundle of trajec- versal of the _equations of motion. For thermostated, dis_sipgtive sys-
tories att=0 and again at any other tinsamust be identical, €™MS: there is a contraction of phase-space volume in [irag

_ . . V(MY < 6Vp(I'p)], represented in the figure by the tube cross sec-
Er(g;/srégo;’so) P(6Vr(I'y),$). This probability can be ex tion shrinking in time, and quantified by a thermodynamic entropy

loss.

P(oV(Iy),8) = f(I's,5) 6V (I'y), 2 For every trajectory that is initiated &t,={qq,po} and
terminates al’,={q;,p;} in a system with reversible dynam-
ics, there is a unique conjugate or antitrajectory that starts at
I'y={q;,-pg and ends al’; ={qo,—po}. Like its forward
component, a bundle of time-reversed, conjugate trajectories
is represented at timeby the volume eIemerﬁVF(F;) cen-
" tered about the poifff,={q;_, —p;_¢. For every initial state

f(I'y,t) = f(I'y,0)exp (_f dsA(FS)>, (3)  Wwithin volume elemenwr(l“g) there exi§ts a unique, desti-

0 nation point within volume elemeV(T';). Sincel™ is the
time-reverse mapping df, and the Jacobian of the map is

whereA is the phase space compression faftdi. Thusthe  ynity, the size of the volume elemeaV (") is equal to
size of the volume element varies in time along the bundle OB\/F(Ft)’ but centered around a different point in phase space.

wheref(I's,s) is the phase space probability density, or dis-
tribution function, afl'g at times. From the Lagrangian form
of the Liouville equatiorj15], the time evolution of the prob-
ability density from the density at its initial stat§I'y, 0), is

trajectories, according to Moreover, if there is a volume contraction frofV(I'y) to
oVr(I'y), as shown in Fig. 1, then there is an equivalent vol-
V(T t . iated with th . - .
= exp dsA(Ty) |, (4y ~ ume expansion associated with the conjugate antitrajectories.
V(L) 0 A measure of reversibility is the ratio of the probabilities

of observing sets of trajectories and their time reverse or
where the right-hand side quantifies the phase space contragntitrajectories. This probability ratio is expressed for initial
tion along the trajectory fronk'y to I',. Such contraction of state points of forward trajectories initiated in tde(I'g)
phase space occurs for thermostated dissipative systems, aaold antitrajectories in the conjugate volume element
the average degree of contraction is related to the spontané\/p(l“g), and its logarithm is the dissipation functidn,
ous entropy production in the system. [16]:
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_ P(er(Fo),O)> l
QT = In(—P(é\/r .0 (5

The magnitude of)(I'y) indicates the degree of irreversibil- | ;:F:E
5| I
& !
[ |

ity over timet for trajectories that originate withiaVp(I'): 0 {1}
Q=0 corresponds to a perfectly reversible bundle of trajec- h l

tories of durationt, while a large value of); characterizes ,
trajectories whose time-reversed conjugate is less likely to be it
observed. Time S G

B. Langevin derivation of the dissipation function 5%

y
L

et al. and Carberryet al. [11,13, a stochastic approach is Wy

|
]

For colloidal systems, such as those investigated in Wang /
=2

used to characterize the trajectories of the colloidal particle, ;
namely the inertialess Langevin equatidr]: T, T

{r, 1.}

dr

fa = fext+ g(t)- (6)
This is a first-order stochastic differential equation describ-. FIG. 2. (Qolor onl_m_e_ Anillustration of a subset of the stochas-
ing the balance of drag and external forces acting on th [ trajectories that initiate ato and terminate at,, denOteq by .
colloidal particle where the force of inertia is negligible. This {0:"t» @d the corresponding subset of backwards trajectories
equation is cast in terms of the particle’s coordinates {ri,ro}. Such stochastic trajectories are represented by the position

h th d f freed iated with th f the Brownian particles) at times, rg from 0<s<t; i.e., the
where the many degrees of ireedom associated wi € S egrees of freedom of the solvent molecules are reduced to a ma-

vent mol_ecule_s are recast into the_macro_scoplc material PrORarial parameter, viscosity, and a random fluctuating force. The sto-
erty of viscosity 7, and the buffeting action of the solvent cpagtic Langevin equation of motion is not time reversible and con-
molecules on the particle is represented by a fluctuating ransequently, it is not possible to construct an antitrajectory that is
dom forceg(t) which is uncorrelated Gaussian noise with conjugate to any particular trajectory as is possible using Newton-
zero mean andg(t)g(t’))=2&kgTa(t—t'), andfey is the ex-  jan dynamics. Moreover, as position is not unique to any given
ternal force exerted on the particle. The drag coefficient foistochastic trajectory, a bundle of trajectories is determined by both
the particle of radius is é=6w»a. The state of the colloidal initial and terminating positions,; andr, unlike deterministic tra-
system is no longer described by the set of coordinates anctories where each trajectory is fully defined by only one state
momenta of all constituent molecules, but is reduced to onlypoint I's at any times along its trajectory. While it is artificial to
the coordinates of the colloidal particle(t)=r,. Unlike  construct conjugate pairs of stochastic trgjectories, it is possible to
Newtonian dynamics, this stochastic equation cannot be usetymerically construct a set of forward trajectorfes,ri} and a set

to construct conjugate pairs of trajectories through time reof backwards traJectorn_e{st,ro} whose probability dlstrlbytlon can
versal, as the random force is Markovian afig0. More- b_e expressed analytically or constructed numerically from
over, as the particle position is not unique to any given traS™muiation-
jectory, there exist infinitely many trajectories that originate
atr, and a subset of these arrive at a given destinatjat ~ volume elements integrated over are of the same $itg;
timet. Let{ro,r} represent those stochastic trajectories thaf|dr. o _

evolve fromr to r,, and let{r,,ro} represent a conjugate set ~ The reversibility of a system subjected to a change at
of “backward” trajectories evolving from, to ro. For each =0 does not depend on whether we use Newtonian mechan-
set of forward trajectoriefr o,r} there exists a correspond- ICS Or Langevin stochastics to model it. We can therefore
ing backward set of trajectorids,,r o}, Fig. 2. In analogy to ~ €XPress the dissipation function for stochastic dynamics by

Eq.(1), let 8V, ,({ro.r ) represent an infinitesimal volume of analogy to Eq(s),

sets of trajectories about the set of trajectories that initiate at P(&V, (({rord) p(ro,ro)

ro and terminate at,, or {ro,r}: Qu(r ,r):ln< HALELA ):I ( ot ) 9)

0 v ortro.rd ot = By, roron ) = M piruro)
NVe{rord) = J"g:_@&o&t' (@) Equation(9) applies not only to single, colloidal particles,

N _ _ ) ) but also to a many-colloidal particle system. In that case
The probability of observing a stochastic trajectory with theg Ng vector whereN is the number of colloidal particles
colloid particle located at an initial position betweefiand  empedded ird-dimensional space. However, the probability
ro+dro and a final position between andr+dr is then distributions of Eq(9) cannot be described analytically for

— dense many-particle systems.

PLOV: {ror)]=pro, ) arodrs, ® Despite the apparent simplicity of this approach, it has not
where the normalized distributigo(ry,r,) can be expressed been used for stochastic systems. Most papers have simply
using well-known probability distributions, and where the applied the dissipation function derived using deterministic
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dynamics to stochastic systeni8,10]. Our derivation is the transient fluctuation theorem, or TFT, and the integrated
solely based upon Langevin dynamics. Within the Langevirtransient fluctuation theorem, or ITFT.
approach we find that the expression for the dissipation func- For systems that are well described by Newtonian and
tions is not unique, but that each function nevertheless satid-angevin dynamics, we can construct expression§fofor
fies the FT. some simple systems, we can explicitly calculate the distri-
bution of €);. In the following two sections, we construct the
C. Fluctuation theorem dissipation function for a colloidal particle in an optical trap

We now show that the dissipation function given in Eq_whose strength is changed, and for a particle in an optical

(9) obeys the FT. The probability density associated withr@P that is translated.
observing a set of trajectories of duratibfor which Q,=A
is simply IIl. IRREVERSIBILITY IN THE CAPTURE EXPERIMENT
In the capture experimetif.3], an isolated colloidal par-
P(Q.=A) :fdrodrté(ﬂt(ro,rt) -A)p(rery. (10 ticle is localized in a trap of strengtky over a sufficiently
long time that the particle positionis distributed according
Likewise, the density associated with a trajectory with= to the equilibrium Boltzmann distribution. At time=0, the
-Ais trap strength is increased discontinuously frignto k;, so
that the particle is held or “captured” more tightly and the
particle’s trajectory is recorded as it relaxes into its new equi-
librium distribution. Here, we use Langevin dynamics to
construct an expression fér,.
An ensemble of trajectories can be constructed using the

:f drodr [ Q(ri,ro) = Alp(ro,ry), (11) Langevin equation,

P(Qi=-A) = f drodr (5[ Q(ro,ro) + Alp(ro,ry)

where we have use@Q,(rg,ry)=—Q(r,rq). Using the defini- gd_r =—kyr +g(t), (16)
tion of ), from Eq.(9), we can rewriteP({),=-A) as dt
where the initial positionry of the particle in a two-
P(Q,=-A) = f drodr (S Q(ry, 1) — Al dimensional trap is distributed according to the Boltzmann
distribution
Xexp= Qu(r,ro)lp(rero). (12 ko Kor2
Thus Palfolo) = <2kaT>eXp( 2kBT>' (17
P(Q,=A) For a particle in a harmonic well, we can construct distribu-
P(Q,=-A) tions p(rq,r;) of Eg. (9) from well-known formulas for the
time-dependent distribution for the particle positigi].
f dr odr S Q(r o, ) = Ap(F o) The.Green’s. function provides the p_robapility of_qbserving a
' ' particle atr, in a trap of strengtlk;, given its positiorr at
- time t earlier,
f drodr 5[ Q4(r, 1 o) = Alexp[= Qu(ry, 1 o) Ip(re, 1 o) K
G(re;ro.k t)z( L )
(13) CTOTEY T 201k T — exd— 2t/7)]

ko1~ roexp(—t/7)]?
2kgT[1 - exd— 2t/7)]

P(Q=-A) wherer=£/k; is the characteristic relaxation time of the par-
P(Q,=A) = exp-A). (14) ticle residing in a harmonic potential of strendth In the
limit of long time, t— oo, the Green’s function reduces to the
This approach can also be used to derive the FT using thgme-independent Boltzmann distribution for a particle in a
analogous deterministic quantities, E¢g$)—(5). From this,  well of strengthk,. Thus the probability density of forward
you see that the FT does not describe the distribuitid,),  trajectoriesp(r,r,), is the product of the probability that an
but rather specifies that distribution’s asymmetry and how iquilibrated particle resides Bt att=0 in a trap of strength
evolves in time. To get better statistics, the FT is sometimeRO, i.e., Pg(ro.ko), and the probability of observing the par-

and recognizing that the integration variabtgsandr, can
be written arbitrarily, we see that the result is the [2T:

xexp(— > (18)

expressed as the integrated fluctuation theafié) [15]: ticle atr, some timet after the trap strength was changed to
P(Q), < 0) ki, given the initial positionry, or G(ry;rq,kq,t). That is,
m = (exp(- Qt)>£lt>0- (15 p(ro,ry) =Pg(rg,ko)G(ry;ro,kq,t). Likewise, the probability
t

density of the corresponding antitrajectories psry,ro)
When Eqgs.(14) and (15) are applied to systems that are = Pg(r{,ko)G(ro;r¢,kq,1), and the dissipation function, Eq.
being driven from their initial state, they are referred to as(9) simplifies to
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2 T T 4 T T Y

p(2)

Ensemble average of the dissipation, <Q>

0 0.1 0.2 0.3 04
Time, t (s)

FIG. 4. (Color onling The ensemble average of the dissipation
FIG. 3. (Color online Distributions of P({,) at t function (Q)y) versus trajectory timé from Carberry’s capture ex-

=(s) 2 ms, (+) 20 ms(blue onling, (+) 200 ms(red online  con- periment(points and predicted from Langevin dynamics, E¢&L)

structed from Langevin simulation of a particle in a two- and(23).

dimensional harmonic well whose strength increases fkgito k;

att=0. The values of the characteristic times £/k;, and trapping  tion, as it can be in the drag experimgt], ((),) does have

constants have been chosen to mimic the experiment of Cargerry gayeral entropy productionlike properties. The ensemble av-

al. [13]: é=1.05X 10" 'Ns/m, ky=1.22 pN/jum, and the orthogo- erage of the dissipation function is
nally resolved trapping constants kf=2.9 andk{=2.7 pN/um.

The simulated distributions are strikingly similar to the distributions

sampled in the capture experimdt8], and within 1% of an ana- f dr odr (r o, )P(r o, 1'e)

lytic  formula  P(Q=A)=exp[A/2—a;*+(1/4)|A]]/VaZ+4a, Q)= . (20)
where a,=[1-exp(-2t/7)](ky—k))?/ (kky). The inset plots f drodr p(rory
IN[P(Q=A)/P(Q;=-A)] against(), for these three distributions, OO

and compares them with the prediction of the T(fime). . o . .
In the long time limit, the average square particle position is

given by the equipartition theorenr,?)=kgT/k, and the av-
(ko= k) (r2=r2). (199  erage accumulated work done is then

(Q ) = 5(ko — kp)[L/kg — L], (21)

1

O, =
U 2keT

This expression is identical to that derived from Es).using

Newton’s (deterministi¢ equations of motion for a compa-

rable system: a single solute molecule under the influence of

a harmonic potential, in a sea of thermostated solvent mol-

ecules that are unaffected by the trap. Equatit®) is also

the expression used by Carbegtal. in their demonstration Where AF(kg,ky) =F (k) =F(kg)=1/2kgT In(k;/ko) is the

of the TFT[13]. difference in the Helmholtz free energy for systems with
The distribution of the dissipation functio®((},), from different trapping strengths. Note th&f), ...) is positive

Langevin dynamics is found fromP(2,=A)= [dr,dr 5, definite: its sign is unchanged by the direction of strength of

—-A)p(r,ro) and Eq.(19). A numerical solution oP((),) in  the trap, i.e., whether the trap is strengthened or weakened at

two dimensions using values matching the experimental pa=0. Moreover, from Eq(20), the dissipation function at any

rameters in Carberrgt al. is clearly non-Gaussian, Fig. 3. time t after the change in the optical trap strength can be

The distribution is highly peaked &®,~0 and becomes Written as

highly asymmetric, tending towards positive valuedhfas _ _ _

the duration of the trajectory increases. The functional form (@0 = Q1 = exp= 2/7)]. (23

of the dissipation function results from the difference be-Figure 4 demonstrates the Langevin prediction and experi-

tween the squares of two Gaussian variablggndr . mentally determined values f);) as a function oft. The
While the ensemble average of the dissipation functioraverage of the dissipation function, evaluated over all trajec-

for this system cannot be identified with the entropy produc+ories of any duratiort, (£),), is positive for all time, irre-

ZAF(ko,kl)> _q 22

<Qt~>:>o> = COSh( kBT
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Time, t (s)

FIG. 6. (Color onling Langevin simulations of the drag experi-
ment for three different dissipation functiorﬁ;t’\'b) (red onling,
QF*(s) (blue onling, Q' (+) (green onling The dots represent the
probability ratio, P(Q2,<0)/P(Q;>0), and the lines represent the
average of the exponential, €xy),), Eq. (15). The parameters for
this simulation arek=0.5,v=2, £=3, where energy is in units of
kgT, length is in micrometers, and time is in seconds. All three
dissipation functions obey the ITFT, but have different values at
different times.

dr

ga == k(r - Voptt) + g(t) (24
FIG. 5. (Color onlineg Two example trajectories generated for ) . o )

the drag experiment using Langevin dynamics, one from a set oyVe can transform this equation of motion into a different
forward trajectories{ro,r and another from a set of backward coordinate system that translates with constant velocity,,
trajectories{r,,o}. These trajectories are frooonjugatetrajectory ~ With its origin displaced by évy,/k, using r=x+vq,t
sets in ther-coordinate frame as the initial position in the forward ~éVop/k. The equation of motion in the moving and
trajectory is identical to the destination position in the backwarddisplaced-coordinate frameis then
trajectory [see dashed lines if)]. In (b), these same trajectories dx
are transformed into the movingcoordinate frame where they are E—=-kx+g(t). (25)
no longer members of conjugate trajectory sets. The forward trajec- dt
tory initiates atxy and terminates at;, while the backward trajec-

tory starts ak! (wherex! #x,) and ends aky(x) % xg). This is the equation of motion of a particle in a stationary

trap, for which we already have time-dependent distributions
of the particle position, Eqg17) and(18). Consequently, in
the limit of large time(or in the steady statehe distribution
of particle position in a stationary trap is identical to the
distribution of particle positions relative to the center of a
trap which translates according¥g,t—év,/k; i.e., the dis-
IV.IRREVERSIBILITY IN THE DRAG EXPERIMENT tribution is dragged along by the trap, but always lags a
distanceév,y,/ k behind the center of the trap. At early times
In the drag experimerijtl1], a colloidal bead is located in t< 7, this is not the case as there are some initial transients.
a stationary optical trap of strengkrand fort= 0, the trap is As in the capture experiment, we can construct expres-
translated with constant velocity,, relative to the solvent. sions for the distributions of forward and backward trajecto-
The inertialess Langevin equation governing the particle mories, and we can express the dissipation function as the ratio
tion is of these distributions. But unlike the capture experiment,

spective of whether the trap is strengthened or weakened.
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there are two obvious coordinate frames, the fixedpendent expression. This is in contrast to the stochastic-
r-coordinate and the moving-coordinate frame, in which generated trajectories where particle position is not unique to
we can cast the trajectories. We can express a set of forwaahy given trajectory such that both the initial positigrand
trajectories using either coordinate frart{ey, r ={xg,Xy}); position at timet, r,, are required to construct sets of for-
however, because the displacement oftfmordinate frame wards and backwards trajectories. The Newtonian dissipation
from the r-coordinate frame depends upon time, the correfunction, denoted by and first used in the experimental
sponding sets of backwards trajectories are not identicanalysis[9,11], is
({re,ro #{x,Xo})- That is, trajectories that are conjugate in 1
thex coordinate cannot be conjugaterinunlessvqp,=0, Fig. oN=— dS(Fopt Vopy) - (30)
5. Consequently, the dissipation function constructed from keTJo
Eqg. (9) depends upon the coordinate frame used to describe, . . .
forward and backward trajectories. This expression was orlglnally evalgated from E5). [11].

First, let us consider the dissipation function generated b% Consegu_ently, f,(,)r t_h|s_ one experiment, there are thre_e ap-
trajectories that are conjugate in tkeoordinate frame. This arently “different” dissipation functions, each associated

is a convenient coordinate frame as we can express thiith how the equations of motion are caeeterministic or

propagator distributions in the-coordinate frame as simple StOCh‘."‘Stm and, if sto.chasfuc, th.e coordinate frame used to
Green's functions, as a consequence of E%). Thus we describe the stochastic trajectories. Wan@l. demonstrated

N
consider a pair of conjugate sets of trajectories: the forwardat{% obeys the ITFT[11], and van Zon and Cohen dem-
trajectories go fromx, to x, and the conjugate or backward Onstrated thafl;” obeyed the transient form of the FT using
trajectories proceeds from to x,. The probability density L-@ngevin dynamicg9,10. Furthermore, bott)," and ()
associated with the forward set, given that it startsgts ~ ©PeY the FT by constructiofsee Eqs(9)—(14)]. To demon-
G(x; Xo,K, 1). The probability density of the backward set of strate this, we have evaluated the different dissipation func-

N L,x Lr . . .
trajectories, given that it starts at is G(xo:X;,k,t). The tions;, %, andQ" from 500 000 stochastic trajectories

probability densities of the trajectory set are obtained byamd plotted the left-hand side and right-hand side of the ITFT

ltiolving th h by th bability of ob ing the ini- asafunc'gior? of.trajectory timein 'Fig. 6. This figure shows
g]alf p;gs}/ilt?gn,xg(ljgo— gzopt/i g:di Ellril_gv(())ptlske:rVIng emn that the dissipation functions derivable from E¢®.and(9)

obey the FT.

Vgt It is easy to see that we can describe other related func-
P(Xo,X) = Pg| Xo =g~ —kE,k Gxi;Xo,kt),  (26)  tions that obey the FT. The dissipation functid®® andQ-*
are related via a force or energy balance of the optical, drag,

and and random forces derived from E®);
F t+Fd +F d:01 (31)
P(X,,Xo) = pB<Xt —r - %at,k>e(xo;xt,k,t). (27) _ o e _ -
k which we can re-express in terms of the particle positions,
From Eq.(9), the dissipation function is ! toodr !
q.(9) issipation function i f dSFopt(S)‘§J dsd_sS+J dsg(9)=0, (32
y 0 0 0
ap= - o ), 29
kBT t t
where the superscript,x indicates that the function was fo dsFop((S) = &(Xe = Xo) = EVopt + fo dsg(s)=0.
derived using Langevin trajectories that are conjugatg.in
Similarly, Q'{*r, the dissipation function constructed from tra- (33
jectories that are conjugate m is We can express the last force balance as a sum of work terms
by projecting the forces intog,/ kgT:
oL _( kvoptt ~ gvom>(rt— . 29 Yy proj g 2 opt! Kg t
t - - - : v -V
kgT[1-exd-t/7)] kgT aN=-ob*+ &Vopt | ~Vopt tf dsg(s). (34)
keT  kgT Jo

As for the capture experiment, the ensemble average for both

of these dissipations will be greater or equal to zero;The left-hand side is the work associated with translating the
(Qp>0. optical trap as it was originally referred to in Wareg al.
Unlike the stochastically derived dissipation functions,[11]. This is simply the work needed to overcome the hydro-
there can be only one dissipation function derived from dedynamic drag accumulated over the observation time: if no
terministic Newtonian dynamics, E¢). This is because an particle were present in the trap, no work would be expended
initial point in phase spacd,y, fully specifies a trajectory of in translating the trap. The first term on the right-hand side is
durationt, and its conjugate antitrajectory. Thus any trajec-the work associated with dragging the particle relative to the
tory of durationt and its antitrajectory are fully determined center of the trap. The second term is the work done to drag
by a single point in phase space, irrespective of the coordithe trap containing a particle that is stationary relative to the
nate frame in which the point is described, then the dissipatrap center. The final term represents the energy expended in
tion function also has a unique and coordinate-frame indedisplacing the particle against the random force acting on the
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particle. A Gaussian distribution satisfies the FT if its vari- confirms that the dissipation function is a measure of the

ance is numerically equal to twice its mefd]. The distri-  irreversibility of the system.
butions P(Q)}) and P(Q;*) have Gaussian distributions that
satisfy the FT. As the mean of the time-integrated random ACKNOWLEDGMENT

force is zero and its variance iglgTt, the distribution of the _
sum of the final two terms in Eq34) also obeys the FT. A We acknowledge the Australian Research Cou@&RC)
similar exercise can be applied &' and Q" for provision of partial funding through a Discovery grant.

APPENDIX: NEWTONIAN DERIVATION OF THE
V. CONCLUSION DISSIPATION FUNCTION FOR THE CAPTURE

We present a general derivation of the dissipation function EXPERIMENT

using stochastic dynamics. This description is based upon In this paper we present a derivation of the dissipation
Evans and Searles’ original derivation of the FT using time-function for the capture experiment using stochastic dynam-
reversible mechanics; however, we demonstrate that it can bes. For completeness, we present a Newtonian derivation for
applied equally to systems described by stochastic, Langevithe same system. In the capture experiment, a particle is held
dynamics. This is important as several stochastic studies af a harmonic trap that changes strength discontinuously at
the FT simply assume a functional form ©f, or derive();  the start of measurement. In Newtonian dynamics, we repre-
from Newtonian mechanics or “using detailed balance,’sent this as a system bfparticles, and identify each particle
rather than construd®, consistently using its stochastic defi- with an indexi. The dynamics of the system is tracked in
nition. We have shown, through analysis of two recent exterms of the positior; and momentunp; of each particle.
periments, that the stochastically deriv@dcan have a dif- Each particle’s motion is influenced by the interparticle force
ferent functional form from the deterministically derived Fy;. In addition, we identify one particlé=1, as being sub-
dissipation function. Moreover, while the dissipation func-ject to the harmonic trap which contributes the potential en-
tion is uniquely defined for deterministic systems, it is notergy
unique for stochastic systems. Despite these differences, sto- 10
chastic dissipation functions obey the FT, and as a conse- Dypap(k(t),q1(1) = 5q7(DK().
quence, the ensemble averages(hfare positive definite, 1o trap constant is defined such thé®)=k, and k(t>0)
reminiscent of entropy production. -k
Finally, from thermodynamics we know that a system =

evolves reversibly alona anv guasistatic path. and conse- Since the experiment is in thermal contact with its sur-
y g any q - patm, oundings, we introduce a thermostat. We use a Nose-Hoover
quently any measure of a system’s irreversibility must equ

ero for this infinitelv slow process. To demonstrate this hermostat to control the temperature of these particles
Zero. IS Infinitely slow p ' ! ‘through a switchg, whereS =1 for each of theN,, thermo-
consider the capture experiment where the trap strengt_h Stated particles, an§ =0 for unthermostatted particles, in-
changed quasistatically. That is, the value of the trap.pm%luding the optically trapped particle. This thermostat intro-
constant chang_e_s _slowly froly to ky so that the system Is . duces another dynamic variablg and the equations of
always at equilibrium. We can model such a quasistati

change in the trap strength by a series rofsmall step ‘motion for each particle is defined as
changes irk separated by infinitely long time intervals. Let ) pi(t)

() represent the average dissipation function associated Qi(t):W,
with the ith step change fronk/_; to k/, in the long time

limit. Here ki =ko+iAk wherek/=k; and Ak=(k;—Kko)/n is

the step change in the trapping constants. The dissipation pi(t) :2. [Fij1 = diakaai(t) = SLORi(D),
function for the entire quasistatic process id)) !
=lim,_..=L(Q"). From Eq.(22), (Q)=(Ak)?/2kk/_,, and N 5
therefore 7= l[E (Sp_l(t)) _ dNWﬁ—l:| _
N Qlizt\ m

n
. . (Ak)?
Q)= |Im2 Q)= |Im2 KK (35  Note thatd is the number of Cartesian dimensions for the
o=t =izl <% Big system 8 1=ksT wherekg is the Boltzmann constant arfd
In the quasistatic limitn— o), Ak—0 asO(1/n). Fur- the thermostat temperaturg, is the mass of the particle, and

thermore, allk’ are bounded betweeky andk,, so in this ~ Q the effective mass of the thermal reservoir.

limit, (Q')— 0 asO(1/n?). Hence Now that we have defined our system in terms of its de-
terministic equations of motion, we can define the distribu-
noo 1 tion function for ourt=0 starting system:
(@)= lim X, (Q") = lim nO<—2> =0 (36) .
nowis o onee AN f(I",0) = exp[ - B(K(p) + (q) + Pyrap(I', k(0)) +5Q27) ],

This shows that in the quasistatic lin{2)=0, and the sys- whereK(p) is the kinetic energy, and(q) is the potential
tem is always at equilibrium so no energy is dissipated. Thignergy due to interparticle interactions. Re-expressing the
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dissipation function in terms of the distribution function using E@3. (4), and(5) yields

P(éVr(Fo),O)) _ In(f(F(O),O)) _ Jt

P(8Vr(Ty),0) f(I'(1),0) dsA[r(s)], (A1)

Qg =In (
0

where the variablé\ corresponds to the phase space contraction of a trajectory bundle iise@é-ig. 1. This contraction
or expansion is due to the action of the thermostat upon the system. The first term on the right-hand side equation, written with
the expressions for the distribution functions inserted, gives

1
2
- + + +=
n =1n
f(r'(t),0)
exp

- B{ Klp(t)]+ @[q(t)] + Pyap(I'(1),k(0)) + %Qéz(t)H
=B fo ds{K[p(s)] + @[q(s)] + Pyap(I'(8),ko) + QLY

t
= ﬁf dsf (ko = ky)d1(s) - 01(s) ~ ANk T(s)]. (A2)
0

As [tds dNy((s) is equal and opposite to the phase space compression intEgdsA[I'(s)], Egs.(Al) and(A2) yield
0= 3Bk = k)[G*(D) = 4*(0)].

This corresponds with the dissipation function derived using stochastic dynamics.
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