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The fluctuation theorem(FT) describes how a system’s thermodynamic irreversibility develops in time from
a completely thermodynamically reversible system at short observation times, to a thermodynamically irre-
versible one at infinitely long times. In this paper, we present a general definition of the dissipation functionVt,
the quantitative argument in the fluctuation theorem(FT), that is a measure of a system’s irreversibility.
Originally cast for deterministic systems, we demonstrate, through the example of two recent experiments, that
the dissipation function can be defined for stochastic systems. While the ensemble average ofVt is positive
definite irrespective of the system for which it is constructed, different expressions forVt can arise in stochas-
tic and deterministic systems. Moreover, within the stochastic framework,Vt is not unique. Nevertheless, each
of these expressions forVt satisfies the FT.
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I. INTRODUCTION

As Loschmidt pointed out in 1876, the equations of mo-
tion are time reversible, so that for every trajectory that sat-
isfies Newton’s equations, there is a time-reversed trajectory,
or “antitrajectory,” that is also a solution to the equations of
motion [1]. If a system evolves from stateA to stateB along
a given path, then the system’s antitrajectory is described by
the time-reversed path from an initial stateB to a final state
A. But while a particular trajectory and its conjugate antitra-
jectory are both solutions of the equations of motion, the
probability of observing an antitrajectory can be exception-
ally small compared with that of its respective trajectory.
That is, the evolution of a system proceeds preferentially in
one direction. The second law of thermodynamics stipulates
that a macroscopic system evolves overwhelmingly in one,
time-forward direction, and is “irreversible.” However, the
second law is strictly applicable only to large systems over
long time scales and does not describe small nanosystems
which may not be completely irreversible over small time
and length scales. Aquantitativedescription of irreversibility
for systems of arbitrary size is given by the fluctuation theo-
rem(FT) of Evans and colleagues[2,3]. The theorem bridges
the gap between the mathematical description of reversible
dynamics and the second law expectation of irreversible pro-
cesses. In fact the FT predicts that small systems are revers-
ible over short time scales, and this has been verified in
computer simulation and experiment.

The principle argument of the FT is the dissipation func-
tion, which is a measure of a system’s irreversibility and is
defined as the ratio of probability densities of observing a
trajectory of durationt to that of its antitrajectory. The FT
describes the asymmetry in the distribution of a dissipation
function with observation time. In other words, the FT de-
scribes the transition from a fully reversible system, at van-
ishingly short observation times, to an irreversible one, at
infinitely long observation times. However, the FT does not
prescribe the time or length scales over which reversibility
can be observed. These time and length scales have been

demonstrated from deterministic[2,3], and stochastic equa-
tions of motion[4–10], and recently measured in experiment
[11]. In each of these cases, the dissipation function was
derived from deterministic Newtonian equations of motion
or “detailed balance.” However, in some of these studies
[9–11], the time and lengths scales of interest are too large to
be easily simulated using molecular dynamics simulations.
Lebowitz and Spohn[12], on the other hand, derive a dissi-
pation function using local detailed balance together with
stochastic dynamics. In this paper, we provide a definition
for a fully stochastically derived dissipation function which
can be applied to systems whose time and length scales are
consistent with Langevin dynamics. Two recent experiments
demonstrated that trajectories of an isolated colloidal particle
in an optical trap obey the FT[11,13]. An optical trap is
formed when a transparent, micron-sized particle, whose in-
dex of refraction is greater than that of the surrounding me-
dium, is located within a focused laser beam. The refracted
rays differ in intensity over the volume of the sphere and
exert a subpico-Newton forcespN=10−12Nd on the particle,
drawing it towards the region of highest light intensity, i.e.,
the focal point or trap center. The optical trap is harmonic: a
particle locatedr from the center of the trap has an optical
force,Fopt=−kr , acting to restore its position to the trap cen-
ter. k is the trapping constant which can be tuned by adjust-
ing the laser power. The first experiment by Wanget al. [11],
which we refer to as the “drag” experiment, recorded particle
trajectories in a translating trap and showed that the dissipa-
tion function follows an integrated form of the FT. The sec-
ond and more recent experiment by Carberryet al. [13],
named the “capture” experiment, recorded particle trajecto-
ries in a trap whose strength was increased discontinuously
in time. This showed that the dissipation function directly
satisfies the FT[14].

In this paper, we investigate the measure of irreversibility,
referred to as the dissipation function, that serves as the
quantitative argument in the FT. In the next section, we re-
view the derivation of the dissipation function using both
Newtonian and Langevin dynamics and show how, by con-
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struction, the dissipation function obeys the FT. In Sec. III,
we analyze the dissipation function for the capture experi-
ment and in Sec. IV, we analyze the dissipation functions that
apply to the drag experiment. For these experiments, we de-
rive dissipation functions directly from Langevin dynamics
and show that the dissipation function can have different
forms which nevertheless satisfy the FT.

II. IRREVERSIBILITY MEASURE

A. Newtonian derivation of the dissipation function

Under Newtonian dynamics, a system’s state is described
in terms of the coordinatesq and momentap of all constitu-
ent molecules, including solvent molecules, and is repre-
sented by a point in phase space,G;hq ,pj. Trajectories in
phase space are deterministic; that is, each point in phase
space corresponds to a unique trajectory and a trajectory can
be identified by its point in phase space at any arbitrary time
s, Gs. Consider a trajectory initiated atG0;hq0,p0j, at t=0,
that terminates after timet at Gt;hqt ,ptj. Let dVGsGtd, rep-
resent an infinitesimal volume of states about the pointGt:

dVGsGtd ; lim
dq,dp→0

dqdp. s1d

For every initial state within volume elementdVGsG0d there
exists a unique destination point within volume element
dVGsGtd. Thus dVGsGsd, wheres can take on any value be-
tween 0 andt, represents a unique “bundle” of trajectories,
identified by their state points at times. Since the same ex-
clusive set of trajectories are described by bothdVGsG0d and
dVGsGtd, the probabilities of observing the bundle of trajec-
tories att=0 and again at any other times must be identical,
P(dVGsG0d ,0)=P(dVGsGsd ,s). This probability can be ex-
pressed as

P„dVGsGsd,s… = fsGs,sddVGsGsd, s2d

where fsGs,sd is the phase space probability density, or dis-
tribution function, atGs at times. From the Lagrangian form
of the Liouville equation[15], the time evolution of the prob-
ability density from the density at its initial state,fsG0,0d, is

fsGt,td = fsG0,0dexpS−E
0

t

dsLsGsdD , s3d

whereL is the phase space compression factor[15]. Thus the
size of the volume element varies in time along the bundle of
trajectories, according to

dVGsGtd
dVGsG0d

= expSE
0

t

dsLsGsdD , s4d

where the right-hand side quantifies the phase space contrac-
tion along the trajectory fromG0 to Gt. Such contraction of
phase space occurs for thermostated dissipative systems, and
the average degree of contraction is related to the spontane-
ous entropy production in the system.

For every trajectory that is initiated atG0;hq0,p0j and
terminates atGt;hqt ,ptj in a system with reversible dynam-
ics, there is a unique conjugate or antitrajectory that starts at
G0

* ;hqt ,−ptj and ends atGt
* ;hq0,−p0j. Like its forward

component, a bundle of time-reversed, conjugate trajectories
is represented at times by the volume elementdVGsGs

*d cen-
tered about the pointGs

* ;hqt−s,−pt−sj. For every initial state
within volume elementdVGsG0

*d there exists a unique, desti-
nation point within volume elementdVGsGt

*d. SinceG* is the
time-reverse mapping ofG, and the Jacobian of the map is
unity, the size of the volume elementdVGsG*

0d is equal to
dVGsGtd, but centered around a different point in phase space.
Moreover, if there is a volume contraction fromdVGsG0d to
dVGsGtd, as shown in Fig. 1, then there is an equivalent vol-
ume expansion associated with the conjugate antitrajectories.

A measure of reversibility is the ratio of the probabilities
of observing sets of trajectories and their time reverse or
antitrajectories. This probability ratio is expressed for initial
state points of forward trajectories initiated in thedVGsG0d
and antitrajectories in the conjugate volume element
dVGsG0

*d, and its logarithm is the dissipation functionVt

[16]:

FIG. 1. (Color online) An illustration of a set of neighboring
Newtonian trajectories initiated in a volume elementdVGsG0d (top
tube) and the corresponding set of time reverse or antitrajectories
initiated in dVGsG0

*d (lower tube) in coordinate, momentumsG
;q ,pd and time t space. For every trajectory that starts atG0

;sq0,p0d in volume elementdVGsG0d and ends atGt;sqt ,ptd in
volume elementdVGsGtd at some timet later, there exists its time
reversed or antitrajectory that starts atG0

* ;sqt ,−ptd in element
dVGsG0

*d and ends atGt
* ;sq0,−p0d in dVGsGt

*d. The size of the
volume elementsdVGsGtd and dVGsG0

*d are equivalent by time re-
versal of the equations of motion. For thermostated, dissipative sys-
tems, there is a contraction of phase-space volume in time[i.e.,
dVGsGtd,dVGsG0d], represented in the figure by the tube cross sec-
tion shrinking in time, and quantified by a thermodynamic entropy
loss.
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VtsG0d = lnSPsdVGsG0d,0d
PsdVGsG0

*d,0d
D . s5d

The magnitude ofVtsG0d indicates the degree of irreversibil-
ity over time t for trajectories that originate withindVGsG0d:
Vt=0 corresponds to a perfectly reversible bundle of trajec-
tories of durationt, while a large value ofVt characterizes
trajectories whose time-reversed conjugate is less likely to be
observed.

B. Langevin derivation of the dissipation function

For colloidal systems, such as those investigated in Wang
et al. and Carberryet al. [11,13], a stochastic approach is
used to characterize the trajectories of the colloidal particle,
namely the inertialess Langevin equation[17]:

j
dr

dt
= fext+ gstd. s6d

This is a first-order stochastic differential equation describ-
ing the balance of drag and external forces acting on the
colloidal particle where the force of inertia is negligible. This
equation is cast in terms of the particle’s coordinatesr ,
where the many degrees of freedom associated with the sol-
vent molecules are recast into the macroscopic material prop-
erty of viscosityh, and the buffeting action of the solvent
molecules on the particle is represented by a fluctuating ran-
dom forcegstd which is uncorrelated Gaussian noise with
zero mean andkgstdgst8dl=2jkBTdst− t8d, and fext is the ex-
ternal force exerted on the particle. The drag coefficient for
the particle of radiusa is j=6pha. The state of the colloidal
system is no longer described by the set of coordinates and
momenta of all constituent molecules, but is reduced to only
the coordinates of the colloidal particle,r std=r t. Unlike
Newtonian dynamics, this stochastic equation cannot be used
to construct conjugate pairs of trajectories through time re-
versal, as the random force is Markovian andj.0. More-
over, as the particle position is not unique to any given tra-
jectory, there exist infinitely many trajectories that originate
at r 0 and a subset of these arrive at a given destinationr t at
time t. Let hr 0,r tj represent those stochastic trajectories that
evolve fromr 0 to r t, and lethr t ,r 0j represent a conjugate set
of “backward” trajectories evolving fromr t to r 0. For each
set of forward trajectorieshr 0,r tj there exists a correspond-
ing backward set of trajectorieshr t ,r 0j, Fig. 2. In analogy to
Eq. (1), let dVr,rshr 0,r tjd represent an infinitesimal volume of
sets of trajectories about the set of trajectories that initiate at
r 0 and terminate atr t, or hr 0,r tj:

dVr,rshr 0,r tjd ; lim
dr 0,dr t→0

dr 0dr t. s7d

The probability of observing a stochastic trajectory with the
colloid particle located at an initial position betweenr 0 and
r 0+dr 0 and a final position betweenr t and r t+dr t is then

PfdVr ,rshr 0,r tjdg = psr 0,r tddr 0dr t, s8d

where the normalized distributionpsr 0,r td can be expressed
using well-known probability distributions, and where the

volume elements integrated over are of the same size;udr 0u
= udr tu.

The reversibility of a system subjected to a change att
=0 does not depend on whether we use Newtonian mechan-
ics or Langevin stochastics to model it. We can therefore
express the dissipation function for stochastic dynamics by
analogy to Eq.(5),

Vtsr 0,r td = lnSPsdVr ,rshr 0,r tjdd
PsdVr ,rshr t,r 0jddD = lnSpsr 0,r td

psr t,r 0dD . s9d

Equation(9) applies not only to single, colloidal particles,
but also to a many-colloidal particle system. In that caser is
a Nd vector whereN is the number of colloidal particles
embedded ind-dimensional space. However, the probability
distributions of Eq.(9) cannot be described analytically for
dense many-particle systems.

Despite the apparent simplicity of this approach, it has not
been used for stochastic systems. Most papers have simply
applied the dissipation function derived using deterministic

FIG. 2. (Color online) An illustration of a subset of the stochas-
tic trajectories that initiate atr 0 and terminate atr t, denoted by
hr 0,r tj, and the corresponding subset of backwards trajectories
hr t ,r 0j. Such stochastic trajectories are represented by the position
of the Brownian particle(s) at time s, r s from 0,s, t; i.e., the
degrees of freedom of the solvent molecules are reduced to a ma-
terial parameter, viscosity, and a random fluctuating force. The sto-
chastic Langevin equation of motion is not time reversible and con-
sequently, it is not possible to construct an antitrajectory that is
conjugate to any particular trajectory as is possible using Newton-
ian dynamics. Moreover, as position is not unique to any given
stochastic trajectory, a bundle of trajectories is determined by both
initial and terminating positions,r 0 andr t, unlike deterministic tra-
jectories where each trajectory is fully defined by only one state
point Gs at any times along its trajectory. While it is artificial to
construct conjugate pairs of stochastic trajectories, it is possible to
numerically construct a set of forward trajectorieshr 0,r tj and a set
of backwards trajectorieshr t ,r 0j whose probability distribution can
be expressed analytically or constructed numerically from
simulation.
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dynamics to stochastic systems[9,10]. Our derivation is
solely based upon Langevin dynamics. Within the Langevin
approach we find that the expression for the dissipation func-
tions is not unique, but that each function nevertheless satis-
fies the FT.

C. Fluctuation theorem

We now show that the dissipation function given in Eq.
(9) obeys the FT. The probability density associated with
observing a set of trajectories of durationt for which Vt=A
is simply

PsVt = Ad =E dr 0dr td„Vtsr 0,r td − A…psr 0,r td. s10d

Likewise, the density associated with a trajectory withVt=
−A is

PsVt = − Ad =E dr 0dr tdfVtsr 0,r td + Agpsr 0,r td

=E dr 0dr tdfVtsr t,r 0d − Agpsr 0,r td, s11d

where we have usedVtsr 0,r td=−Vtsr t ,r 0d. Using the defini-
tion of Vt from Eq. (9), we can rewritePsVt=−Ad as

PsVt = − Ad =E dr 0dr tdfVtsr t,r 0d − Ag

3expf− Vtsr t,r 0dgpsr t,r 0d. s12d

Thus

PsVt = Ad
PsVt = − Ad

=
E dr 0dr tdsVtsr 0,r td − Adpsr 0,r td

E dr 0dr tdfVtsr t,r 0d − Agexp f− Vtsr t,r 0dgpsr t,r 0d

s13d

and recognizing that the integration variablesr 0 and r t can
be written arbitrarily, we see that the result is the FT[2]:

PsVt = − Ad
PsVt = Ad

= exps− Ad. s14d

This approach can also be used to derive the FT using the
analogous deterministic quantities, Eqs.(1)–(5). From this,
you see that the FT does not describe the distributionPsVtd,
but rather specifies that distribution’s asymmetry and how it
evolves in time. To get better statistics, the FT is sometimes
expressed as the integrated fluctuation theorem(IFT) [15]:

PsVt , 0d
PsVt . 0d

= kexps− VtdlVt.0. s15d

When Eqs.(14) and (15) are applied to systems that are
being driven from their initial state, they are referred to as

the transient fluctuation theorem, or TFT, and the integrated
transient fluctuation theorem, or ITFT.

For systems that are well described by Newtonian and
Langevin dynamics, we can construct expressions forVt. For
some simple systems, we can explicitly calculate the distri-
bution ofVt. In the following two sections, we construct the
dissipation function for a colloidal particle in an optical trap
whose strength is changed, and for a particle in an optical
trap that is translated.

III. IRREVERSIBILITY IN THE CAPTURE EXPERIMENT

In the capture experiment[13], an isolated colloidal par-
ticle is localized in a trap of strengthk0 over a sufficiently
long time that the particle positionr is distributed according
to the equilibrium Boltzmann distribution. At timet=0, the
trap strength is increased discontinuously fromk0 to k1, so
that the particle is held or “captured” more tightly and the
particle’s trajectory is recorded as it relaxes into its new equi-
librium distribution. Here, we use Langevin dynamics to
construct an expression forVt.

An ensemble of trajectories can be constructed using the
Langevin equation,

j
dr

dt
= − k1r + gstd, s16d

where the initial positionr 0 of the particle in a two-
dimensional trap is distributed according to the Boltzmann
distribution

PBsr 0,k0d = S k0

2pkBT
DexpS−

k0r 0
2

2kBT
D . s17d

For a particle in a harmonic well, we can construct distribu-
tions psr 0,r td of Eq. (9) from well-known formulas for the
time-dependent distribution for the particle positions[17].
The Green’s function provides the probability of observing a
particle atr t in a trap of strengthk1, given its positionr 0 at
time t earlier,

Gsr t;r 0,k1,td = S k1

2pkBTf1 − exps− 2t/tdgD
3expS−

k1fr t − r 0exps− t/tdg2

2kBTf1 − exps− 2t/tdgD , s18d

wheret=j /k1 is the characteristic relaxation time of the par-
ticle residing in a harmonic potential of strengthk1. In the
limit of long time, t→`, the Green’s function reduces to the
time-independent Boltzmann distribution for a particle in a
well of strengthk1. Thus the probability density of forward
trajectories,psr 0,r td, is the product of the probability that an
equilibrated particle resides atr 0 at t=0 in a trap of strength
k0, i.e., PBsr 0,k0d, and the probability of observing the par-
ticle at r t some timet after the trap strength was changed to
k1, given the initial positionr 0, or Gsr t ; r 0,k1,td. That is,
psr 0,r td; PBsr 0,k0dGsr t ; r 0,k1,td. Likewise, the probability
density of the corresponding antitrajectories ispsr t ,r 0d
; PBsr t ,k0dGsr 0; r t ,k1,td, and the dissipation function, Eq.
(9) simplifies to
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Vt =
1

2kBT
sk0 − k1dsr t

2 − r 0
2d. s19d

This expression is identical to that derived from Eq.(5) using
Newton’s (deterministic) equations of motion for a compa-
rable system: a single solute molecule under the influence of
a harmonic potential, in a sea of thermostated solvent mol-
ecules that are unaffected by the trap. Equation(19) is also
the expression used by Carberryet al. in their demonstration
of the TFT[13].

The distribution of the dissipation function,PsVtd, from
Langevin dynamics is found fromPsVt=Ad;edr 0dr tdsVt

−Adpsr t ,r 0d and Eq.(19). A numerical solution ofPsVtd in
two dimensions using values matching the experimental pa-
rameters in Carberryet al. is clearly non-Gaussian, Fig. 3.
The distribution is highly peaked atVt,0 and becomes
highly asymmetric, tending towards positive values ofVt as
the duration of the trajectory increases. The functional form
of the dissipation function results from the difference be-
tween the squares of two Gaussian variables,r 0 and r t.

While the ensemble average of the dissipation function
for this system cannot be identified with the entropy produc-

tion, as it can be in the drag experiment[11], kVtl does have
several entropy productionlike properties. The ensemble av-
erage of the dissipation function is

kVtl =
E dr 0dr tVsr 0,r tdpsr 0,r td

E dr 0dr tpsr 0,r td
. s20d

In the long time limit, the average square particle position is
given by the equipartition theorem,kr 2l=kBT/k, and the av-
erage accumulated work done is then

kVt→`l = 1
2sk0 − k1df1/k1 − 1/k0g, s21d

or

kVt→`l = coshS2DFsk0,k1d
kBT

D − 1, s22d

where DFsk0,k1d;Fsk1d−Fsk0d= 1/2kBT lnsk1/k0d is the
difference in the Helmholtz free energy for systems with
different trapping strengths. Note thatkVt→`l is positive
definite: its sign is unchanged by the direction of strength of
the trap, i.e., whether the trap is strengthened or weakened at
t=0. Moreover, from Eq.(20), the dissipation function at any
time t after the change in the optical trap strength can be
written as

kVtl = kVt→`lf1 − exps− 2t/tdg. s23d

Figure 4 demonstrates the Langevin prediction and experi-
mentally determined values ofkVtl as a function oft. The
average of the dissipation function, evaluated over all trajec-
tories of any durationt, kVtl, is positive for all time, irre-

FIG. 3. (Color online) Distributions of PsVtd at t
=s•d 2 ms, s•d 20 mssblue onlined , s•d 200 mssred onlined con-
structed from Langevin simulation of a particle in a two-
dimensional harmonic well whose strength increases fromk0 to k1

at t=0. The values of the characteristic time,t;j /k1, and trapping
constants have been chosen to mimic the experiment of Carberryet
al. [13]: j=1.05310−7Ns/m, k0=1.22 pN/mm, and the orthogo-
nally resolved trapping constants ofk1

x=2.9 andk1
y=2.7 pN/mm.

The simulated distributions are strikingly similar to the distributions
sampled in the capture experiment[13], and within 1% of an ana-
lytic formula PsVt=Ad=exp fA/2−Îat

−1+s1/4duAug /Îat
2+4at

where at=f1−exps−2t /tdgsk0−k1d2/ sk0k1d. The inset plots
lnfPsVt=Ad /PsVt=−Adg againstVt for these three distributions,
and compares them with the prediction of the TFT(line).

FIG. 4. (Color online) The ensemble average of the dissipation
function kVtl versus trajectory timet from Carberry’s capture ex-
periment(points) and predicted from Langevin dynamics, Eqs.(21)
and (23).
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spective of whether the trap is strengthened or weakened.

IV. IRREVERSIBILITY IN THE DRAG EXPERIMENT

In the drag experiment[11], a colloidal bead is located in
a stationary optical trap of strengthk and fortù0, the trap is
translated with constant velocityvopt relative to the solvent.
The inertialess Langevin equation governing the particle mo-
tion is

j
dr

dt
= − ksr − vopttd + gstd. s24d

We can transform this equation of motion into a different
coordinate systemx that translates with constant velocityvopt
with its origin displaced byjvopt/k, using r =x+voptt
−jvopt/k. The equation of motion in the moving and
displaced-coordinate framex is then

j
dx

dt
= − kx + gstd. s25d

This is the equation of motion of a particle in a stationary
trap, for which we already have time-dependent distributions
of the particle position, Eqs.(17) and(18). Consequently, in
the limit of large time(or in the steady state) the distribution
of particle position in a stationary trap is identical to the
distribution of particle positions relative to the center of a
trap which translates according tovoptt−jvopt/k; i.e., the dis-
tribution is dragged along by the trap, but always lags a
distancejvopt/k behind the center of the trap. At early times
t!t, this is not the case as there are some initial transients.

As in the capture experiment, we can construct expres-
sions for the distributions of forward and backward trajecto-
ries, and we can express the dissipation function as the ratio
of these distributions. But unlike the capture experiment,

FIG. 5. (Color online) Two example trajectories generated for
the drag experiment using Langevin dynamics, one from a set of
forward trajectorieshr 0,r tj and another from a set of backward
trajectorieshr t ,r 0j. These trajectories are fromconjugatetrajectory
sets in ther -coordinate frame as the initial position in the forward
trajectory is identical to the destination position in the backward
trajectory [see dashed lines in(a)]. In (b), these same trajectories
are transformed into the movingx-coordinate frame where they are
no longer members of conjugate trajectory sets. The forward trajec-
tory initiates atx0 and terminates atxt, while the backward trajec-
tory starts atxt8 (wherext8Þxt) and ends atx08sx08Þx0d.

FIG. 6. (Color online) Langevin simulations of the drag experi-
ment for three different dissipation functions;Vt

Ns•d (red online),
Vt

L,xs•d (blue online), Vt
L,rs•d (green online). The dots represent the

probability ratio,PsVt,0d /PsVt.0d, and the lines represent the
average of the exponential, exps−Vtd, Eq. (15). The parameters for
this simulation are;k=0.5, v=2, j=3, where energy is in units of
kBT, length is in micrometers, and time is in seconds. All three
dissipation functions obey the ITFT, but have different values at
different times.
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there are two obvious coordinate frames, the fixed
r -coordinate and the movingx-coordinate frame, in which
we can cast the trajectories. We can express a set of forward
trajectories using either coordinate frameshr 0,r tj;hx0,xtjd;
however, because the displacement of thex-coordinate frame
from the r -coordinate frame depends upon time, the corre-
sponding sets of backwards trajectories are not identical
shr t ,r 0jÞ hxt ,x0jd. That is, trajectories that are conjugate in
thex coordinate cannot be conjugate inr , unlessvopt=0, Fig.
5. Consequently, the dissipation function constructed from
Eq. (9) depends upon the coordinate frame used to describe
forward and backward trajectories.

First, let us consider the dissipation function generated by
trajectories that are conjugate in thex-coordinate frame. This
is a convenient coordinate frame as we can express the
propagator distributions in thex-coordinate frame as simple
Green’s functions, as a consequence of Eq.(25). Thus we
consider a pair of conjugate sets of trajectories: the forward
trajectories go fromx0 to xt and the conjugate or backward
trajectories proceeds fromxt to x0. The probability density
associated with the forward set, given that it starts atx0 is
Gsxt ;x0,k,td. The probability density of the backward set of
trajectories, given that it starts atxt is Gsx0;xt ,k,td. The
probability densities of the trajectory set are obtained by
multiplying through by the probability of observing the ini-
tial position,x0; r 0−jvopt/k andxt; r t−jvopt/k:

psx0,xtd = PBSx0 ; r 0 −
jvopt

k
,kDGsxt;x0,k,td, s26d

and

psxt,x0d = PBSxt ; r t −
jvopt

k
,kDGsx0;xt,k,td. s27d

From Eq.(9), the dissipation function is

Vt
L,x = −

jvopt

kBT
sxt − x0d, s28d

where the superscriptL ,x indicates that the function was
derived using Langevin trajectories that are conjugate inx.
Similarly, Vt

L,r, the dissipation function constructed from tra-
jectories that are conjugate inr , is

Vt
L,r = S kvoptt

kBTf1 − exps− t/tdg
−

jvopt

kBT
Dsr t − r 0d. s29d

As for the capture experiment, the ensemble average for both
of these dissipations will be greater or equal to zero,
kVtl.0.

Unlike the stochastically derived dissipation functions,
there can be only one dissipation function derived from de-
terministic Newtonian dynamics, Eq.(5). This is because an
initial point in phase space,G0, fully specifies a trajectory of
duration t, and its conjugate antitrajectory. Thus any trajec-
tory of durationt and its antitrajectory are fully determined
by a single point in phase space, irrespective of the coordi-
nate frame in which the point is described, then the dissipa-
tion function also has a unique and coordinate-frame inde-

pendent expression. This is in contrast to the stochastic-
generated trajectories where particle position is not unique to
any given trajectory such that both the initial positionr 0 and
position at timet, r t, are required to construct sets of for-
wards and backwards trajectories. The Newtonian dissipation
function, denoted byVt

N and first used in the experimental
analysis[9,11], is

Vt
N =

1

kBT
E

0

t

dssFopt ·voptd. s30d

This expression was originally evaluated from Eq.(5) [11].
Consequently, for this one experiment, there are three ap-

parently “different” dissipation functions, each associated
with how the equations of motion are cast(deterministic or
stochastic), and, if stochastic, the coordinate frame used to
describe the stochastic trajectories. Wanget al. demonstrated
that Vt

N obeys the ITFT[11], and van Zon and Cohen dem-
onstrated thatVt

N obeyed the transient form of the FT using
Langevin dynamics[9,10]. Furthermore, bothVt

L,x andVt
L,r

obey the FT by construction[see Eqs.(9)–(14)]. To demon-
strate this, we have evaluated the different dissipation func-
tions Vt

N, Vt
L,x, andVt

L,r from 500 000 stochastic trajectories
and plotted the left-hand side and right-hand side of the ITFT
as a function of trajectory timet in Fig. 6. This figure shows
that the dissipation functions derivable from Eqs.(5) and(9)
obey the FT.

It is easy to see that we can describe other related func-
tions that obey the FT. The dissipation functionsVt

N andVt
L,x

are related via a force or energy balance of the optical, drag,
and random forces derived from Eq.(6);

Fopt + Fdrag + Frand = 0, s31d

which we can re-express in terms of the particle positions,

E
0

t

dsFoptssd − jE
0

t

ds
dr s

ds
+E

0

t

ds gssd = 0, s32d

E
0

t

dsFoptssd − jsxt − x0d − jvoptt +E
0

t

ds gssd = 0.

s33d

We can express the last force balance as a sum of work terms
by projecting the forces intovopt/kBT:

Vt
N = − Vt

L,x +
jvopt

2 t

kBT
+

− vopt

kBT
E

0

t

ds gssd. s34d

The left-hand side is the work associated with translating the
optical trap as it was originally referred to in Wanget al.
[11]. This is simply the work needed to overcome the hydro-
dynamic drag accumulated over the observation time: if no
particle were present in the trap, no work would be expended
in translating the trap. The first term on the right-hand side is
the work associated with dragging the particle relative to the
center of the trap. The second term is the work done to drag
the trap containing a particle that is stationary relative to the
trap center. The final term represents the energy expended in
displacing the particle against the random force acting on the
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particle. A Gaussian distribution satisfies the FT if its vari-
ance is numerically equal to twice its mean[9]. The distri-
butionsPsVt

Nd and PsVt
L,xd have Gaussian distributions that

satisfy the FT. As the mean of the time-integrated random
force is zero and its variance is 2jkBTt, the distribution of the
sum of the final two terms in Eq.(34) also obeys the FT. A
similar exercise can be applied toVt

N andVt
L,r .

V. CONCLUSION

We present a general derivation of the dissipation function
using stochastic dynamics. This description is based upon
Evans and Searles’ original derivation of the FT using time-
reversible mechanics; however, we demonstrate that it can be
applied equally to systems described by stochastic, Langevin
dynamics. This is important as several stochastic studies of
the FT simply assume a functional form ofVt, or deriveVt
from Newtonian mechanics or “using detailed balance,”
rather than constructVt consistently using its stochastic defi-
nition. We have shown, through analysis of two recent ex-
periments, that the stochastically derivedVt can have a dif-
ferent functional form from the deterministically derived
dissipation function. Moreover, while the dissipation func-
tion is uniquely defined for deterministic systems, it is not
unique for stochastic systems. Despite these differences, sto-
chastic dissipation functions obey the FT, and as a conse-
quence, the ensemble averages ofVt are positive definite,
reminiscent of entropy production.

Finally, from thermodynamics we know that a system
evolves reversibly along any quasistatic path, and conse-
quently any measure of a system’s irreversibility must equal
zero for this infinitely slow process. To demonstrate this,
consider the capture experiment where the trap strength is
changed quasistatically. That is, the value of the trapping
constant changes slowly fromk0 to k1 so that the system is
always at equilibrium. We can model such a quasistatic
change in the trap strength by a series ofn small step
changes ink separated by infinitely long time intervals. Let
kVil represent the average dissipation function associated
with the ith step change fromki−18 to ki8, in the long time
limit. Here ki8=k0+ iDk wherekn8=k1 and Dk=sk1−k0d /n is
the step change in the trapping constants. The dissipation
function for the entire quasistatic process iskVl
; limn→`oi=1

n kVil. From Eq.(22), kVil=sDkd2/2ki8ki−18 , and
therefore

kVl ; lim
n→`

o
i=1

n

kVil = lim
n→`

o
i=1

n
sDkd2

2ki8ki−18
. s35d

In the quasistatic limitsn→`d, Dk→0 asOs1/nd. Fur-
thermore, allki8 are bounded betweenk0 and k1, so in this
limit, kVil→0 asOs1/n2d. Hence

kVl = lim
n→`

o
i=1

n

kVil = lim
n→`

nOS 1

n2D = 0. s36d

This shows that in the quasistatic limitkVl=0, and the sys-
tem is always at equilibrium so no energy is dissipated. This

confirms that the dissipation function is a measure of the
irreversibility of the system.
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APPENDIX: NEWTONIAN DERIVATION OF THE
DISSIPATION FUNCTION FOR THE CAPTURE

EXPERIMENT

In this paper we present a derivation of the dissipation
function for the capture experiment using stochastic dynam-
ics. For completeness, we present a Newtonian derivation for
the same system. In the capture experiment, a particle is held
in a harmonic trap that changes strength discontinuously at
the start of measurement. In Newtonian dynamics, we repre-
sent this as a system ofN particles, and identify each particle
with an index i. The dynamics of the system is tracked in
terms of the positionqi and momentumpi of each particle.
Each particle’s motion is influenced by the interparticle force
Fi j . In addition, we identify one particle,i =1, as being sub-
ject to the harmonic trap which contributes the potential en-
ergy

Ftrap„kstd,q1std… = 1
2q1

2stdkstd.

The trap constant is defined such thatks0d=k0 and kst.0d
=k1.

Since the experiment is in thermal contact with its sur-
roundings, we introduce a thermostat. We use a Nose-Hoover
thermostat to control the temperature of these particles
through a switchSi, whereSi =1 for each of theNW thermo-
stated particles, andSi =0 for unthermostatted particles, in-
cluding the optically trapped particle. This thermostat intro-
duces another dynamic variablez, and the equations of
motion for each particle is defined as

q̇istd =
pistd
mi

,

ṗistd = o
j

fFi jg − di1k1qistd − Sizstdpistd,

ż =
1

QFo
i=1

N SSipi
2std

mi
D − dNwb−1G .

Note thatd is the number of Cartesian dimensions for the
system,b−1=kBT wherekB is the Boltzmann constant andT
the thermostat temperature,mi is the mass of the particle, and
Q the effective mass of the thermal reservoir.

Now that we have defined our system in terms of its de-
terministic equations of motion, we can define the distribu-
tion function for ourt=0 starting system:

fsG,0d < exp f− bsKspd + Fsqd + Ftrap„G,ks0d… + 1
2Qz2dg ,

whereKspd is the kinetic energy, andFsqd is the potential
energy due to interparticle interactions. Re-expressing the
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dissipation function in terms of the distribution function using Eqs.(2), (4), and(5) yields

VtsG0d = ln SP„dVGsG0d,0…
P„dVGsG0

*d,0…
D = lnS f„Gs0d,0…

f„Gstd,0… D −E
0

t

dsLfGssdg, sA1d

where the variableL corresponds to the phase space contraction of a trajectory bundle in time(see Fig. 1). This contraction
or expansion is due to the action of the thermostat upon the system. The first term on the right-hand side equation, written with
the expressions for the distribution functions inserted, gives

ln
f„Gs0d,0…
f„Gstd,0…

= ln1expF− bHKfps0dg + Ffqs0dg + Ftrap„Gs0d,ks0…d +
1

2
Qz2s0dJG

expF− bHKfpstdg + Ffqstdg + Ftrap„Gstd,ks0d… +
1

2
Qz2stdJG 2

= bE
0

t

dshK̇fpssdg + Ḟfqssdg + Ḟtrap„Gssd,k0… + Qzżj

= bE
0

t

dsfsk0 − k1dq1ssd · q̇1ssd − dNWkBTzssdg. sA2d

As e0
t ds dNWzssd is equal and opposite to the phase space compression integral,e0

t dsLfGssdg, Eqs.(A1) and (A2) yield

Vt = 1
2bsk0 − k1dfq2std − q2s0dg.

This corresponds with the dissipation function derived using stochastic dynamics.
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